Whitepaper Revision 0001
May 24, 2018

©xel.org 2018

Embarrassingly Parallel Grid-computing on the Blockchain

A High-level Overview of the Machinations of XEL

www.xel.org

ABSTRACT

In this overview, we discuss a Blockchain-based, decentralized grid-computing platform which allows tasks with immense computational require-
ments, usually set in the scientific domain, to utilize a virtually infinite number of computational nodes over large physical distances. In contrast
to traditional volunteer-computing where computer owners altruistically donate their spare computational power to one or more research projects,
these projects can now create an additional incentive encouraging users to participate by getting rewarded with automated crypto-currency pay-
ments in exchange for conducted work. This overcomes the problem that most participants in traditional volunteer-computing network are both
typically found in scientific communities and as such very picky about the projects they volunteer to; while an altruistic project like SETI@Home
may excite and attract plenty of volunteers, that does not necessarily apply to a “boring” corporate calculation with little to no scientific impact. By
introducing crypto-currency payments, our system creates an additional incentive, eliminates a necessary scientific value for attracting volunteers,

and contributes to the creation of a system that is open and equally suitable for both scientific and non-scientific use-cases.

Key words. Multiple Data Stream Architectures; Blockchain; Distributed Ledger Technology; Performance

1. Introduction

A vast majority of the world’s computational power is not cen-
tered around supercomputer centers or laboratories but instead
distributed among millions of personal computers in people’s
homes all around the globe. Volunteer computing[6] is a con-
cept which was first introduced in 1996 by the Great Mersenne
Prime Search project [3] and comprises a paradigm which uses
these resources to conduct previously infeasible scientific com-
putations. The potential of distributed computation was quickly
adopted by other projects such as SETI@home [2], which
was launched in 1999 and is dedicated to searching for extra-
terrestrial life by analyzing radio signals from different parts
of the sky. In 2004, BOINC[1] emerged from the SETI@home
project, making this technology accessible to the general public
allowing virtually any research project to be aided by distributed
computation. Typical for these approaches is that they take "em-
barrassingly parallel” [5] problems, i.e. problems which can be
easily broken up into multiple smaller, independent subtasks.
These subtasks can then be assigned to a magnitude of differ-
ent computers which perform the computations all in parallel. In
the case of SETI@home, e.g. every computational entity analy-
ses just a small portion of the sky which can be done indepen-
dently from the analysis of other portions. That being said, virtu-
ally any embarrassingly parallel problem can be accelerated this
way. This includes, but is not limited to, evolutionary compu-
tation, metaheuristics, simulation of particle physics, numerical
weather prediction, CNF solving and crypto-currency mining.
However, volunteer computing relies on altruistic partici-
pants who donate their computational power to one or more
research projects and who are most likely found in the scien-
tific community only. Furthermore, these volunteers typically are
very picky about which project they contribute their resources
to; it is very common that a project must provide some scien-
tific impact or otherwise gain the interest of volunteers in order
to attract any meaningful amount of computational resources.
However, there are many use-cases that do not provide any sci-

entific advances but which are still in need of immense computa-
tional resources. In this paper, we address this issue and propose
a distributed computing system that builds around Blockchain
technology and rewards users with crypto-currency payments
for sharing their computational resources with scientific projects.
The proposed approach creates a non-altruistic incentive for the
broader general public to contribute computational resources and
attracts users outside the boundaries of scientific communities.
This allows for the system to be accessible not only for scientif-
ically meaningful computations but also for, e.g., computation-
ally intense computations in the corporate world. In the remain-
der of this document, we will describe the end-to-end workflow
in detail from the user’s point of view.

2. Paradigm

Our goal was to create an open-source Blockchain-driven
middle-ware system for the distributed computation of embar-
rassingly parallel computational problems. A great focus has
been put on making the platform sustainable, i.e. building a plat-
form that does not depend on any person, central infrastructure
which is required to be maintained, or any continuous funding.
We believe that Blockchain technology holds great potential to
achieve this goal; it offers a solid layer of robustness as it is a
highly redundant decentralized system and allows us to rethink
the way we design systems from the ground up. In particular,
we leverage this new technology to build a “better” version of
BOINC on-top of a decentralized digital ledger across an arbi-
trarily scalable and fault resistant network of computers with-
out the need for a central authority ensuring fair play with all
participating entities acting as independent equal agents in an
open, free and fair environment. While censorship, a monopoly
on the fair market value of a certain amount of computational
power, and favoring certain (more pleasant) projects is theoret-
ically possible in centralized systems, this no longer is the case
in such decentralized environment.

page 1 of 3

3. Terminology

In this paper, the term "scientist" is used in a broader sense and
refers to any entity that seeks to use the computational resources
available in the network in order to solve some complex compu-
tational task which is referred to as a "job". Entities who con-
tribute their computational resources in exchange for Crypto-
currency payments are called "workers".

There are two ways workers can earn units of the underly-
ing Crypto-currency: they can be either rewarded for their on-
going work on a problem or for finding an actual solution to
the problem. The on-going commitment is rewarded by allowing
workers to frequently submit partial (yet incorrect) solutions that
meet certain criteria. These solutions are called "PoW submis-
sions" and the underlying challenge is called "PoW". The term
"bounty" in this study will refer to the latter of the two pathways
and described the actual solutions to the problems. Respectively,
the amounts workers are paid for each of these submissions are
termed "PoW reward" and "bounty reward".

4. End-to-end Work Flow
4.1. Work Creation

The entire workflow typically starts with scientists composing
jobs which contain all the logic to solve for the actual problem
as well as information regarding the rewards being offered to
incentivize participation in solving the problem. To be more pre-
cise, scientists express their algorithmic problem using ePL, a
DSL (domain specific language) particularly designed for this
use-case, which is highly parallelizable and allows to define spe-
cific criteria that determine when a solution to their problem has
been found. While some may argue that introducing a new pro-
gramming language may limit the adoption of this decentralized
platform, we’d like to point out that it is relatively straightfor-
ward to overlay an IDE (integrated development environment)
which allows scientists to code in familiar languages such as
Python, C, and Java while the IDE converts their code to con-
form to the requirements of ePL.

That being said, workers that find actual solutions — or boun-
ties — are rewarded with a "bounty reward" by the scientist paid
in units of the underlying Crypto-currency. These bounty re-
wards are set by the scientist when the job is created and should
be ideally set to an amount that attracts participation in running
their job. As the network grows, competition among scientists to
attract participation in running their job increases; therefore, sci-
entists will want to calibrate their bounty rewards to a fair market
value to ensure interest in their job.

While bounties are the primary incentive to attract compu-
tation nodes to work on a job, there is a risk that nodes could
be working on jobs where no bounty solution even exists. This
could be due to an intentional malicious act by the scientist, or
simply a bug in the job’s code. To mitigate this risk, scientists
will be required to additionally provide PoW rewards. PoW is
defined as moderately hard tasks which are easily verifiable and
which are randomly found at a certain rate, regardless of how
hard or easy the underlying task is, in order ensure workers stay
motivated. PoW rewards should be calibrated to roughly match
the average electricity cost of running a computational node in
order to alleviate any concerns of participants that they could
potentially lose money by running the job.

page 2 of 3

4.2. Working for Bounties

Jobs can be generally understood as programs which take a
pseudo-random input, run a logic coded by the scientist and out-
put whether this particular input constitutes a PoW, a bounty or
nothing. To give a better understanding, such logic could be for
example a variant of the Travelling-Salesman Problem[4] with
the random input translating to one particular solution candidate.
Furthermore, the bounty criterion could be a check whether that
particular solution candidate — in this example, a Hamiltonian
path from a start to a destination point — has a total cost which is
below a certain threshold.

Workers are searching for bounty solutions by continuously
generating new pseudo-random inputs to the function until they
find an input that yields in a bounty solution. These random in-
puts used by the logic will need to be calculated by the com-
putation node using a methodology we called personalizedints.
Rather than simply using a random number generator to cre-
ate random inputs for each computation node, personalizedInts
uses publicly known node and job-specific values such as the
worker’s public key, the job’s ID, the block ID of the block the
job was announced in and some random noise that the worker
can randomly pick. This is necessary to ensure each solution can
be directly tied back to the node that found the bounty solution
in order to prevent certain types of solution stealing attacks. If a
node were to intercept a solution and submit it as their own, their
public key would be different resulting in a different pseudo-
random input, which would likely result in a solution that does
not meet the threshold required by the job author.

When a worker finds a bounty solution, they will submit the
values used to generate the random inputs to the calculation as
well as the output of the calculation as defined by the job author.
If the bounty solution can be verified by the rest of the network,
the worker is paid the bounty reward by the scientist.

4.3. Working for PoW Solutions

PoW Solutions can be found at almost no additional cost after
performing a full evaluation of the scientist’s code while check-
ing if a certain pseudo-random input constituted a valid bounty
solution. The POW task is simply to perform a MD5 hash of
the results of each run of the job’s code and compare that to a
PoW target hash set by the network. If the computational node’s
run produces a hash less than the target, they are eligible for a
POW reward. When a PoW solution is found, the inputs and cal-
culation outputs are submitted, similar to submitting a bounty
solution. The network recalculates the PoW target hash once per
block with a goal of ten PoW rewards per block (with a maxi-
mum of 25 per block) averaged over all currently running jobs.
That is, given a block-time of 60 seconds, the network tries to
converge towards a state where all jobs, in total, payout ten PoW
rewards per minute. Similar to the case outlined above, workers
get rewarded the PoW rewards for every PoW submission that
the network can positively validate.

4.4. Validation of Results

The validation is the most important part of the system. How-
ever, while its absolutely critical to perform this validation step,
many calculations are far too complex and time-consuming to
perform in a timely manner across the entire network. While cal-
culations, which are carried out on the worker’s hardware, can
run for a while without bothering anyone, that cannot be said
for the verification part which every single node in the network

www.xel.org et al.: Embarrassingly Parallel Grid-computing on the Blockchain

must be able to execute in a reasonable amount of time. Hence,
there is a very strict requirement on how complex a verification
can be. If a scientist happens to have a too complex algorithmic
logic, he has the option to provide an alternative simplified ver-
ification logic that checks some key variables from the solution
to ensure the results were valid and at the same time stays within
the permitted boundaries.

During the verification process — for both bounty and PoW
submissions — it has to be ensured that the solution was actually
found by the node submitting it. This part is simple: the pseudo-
random input for the verification is derived from the values the
worker has submitted. Since these values contain the workers re-
ported public-key, it can be easily verified that the public-key in
the values actually matches the worker’s public key that tried to
claim credit for that solution. In the case of a PoW solution, we
additionally need to ensure that the computation node is actually
working on the calculation coded in the job and not just search-
ing for MD5 hashes below the target. This is accomplished by
requiring PoW solutions to include the same data required for a
bounty solution, plus the MDS5 hash that the computation node
found while running the job. Because the verifying nodes now
have all the data required to verify a bounty along with the PoW
hash, they can simply run the bounty verification logic described
above and then apply an MDS5 hash to the outputs. This will al-
low the node to quickly verify that the submitting node is valid
as well as confirming that the submitted POW hash does, in fact,
correspond to the output from running the actual job.

It is felt that the proposed verification steps offer a robust
solution that can deter the most common types of attacks that
would be expected to be encountered in this type of setting.

5. Benefits of an intermediary DSL
5.1. Handling large numbers of platforms

While it is expected that the bulk of platforms contributing com-
putational resources will comprise traditional x86 and x86-64
architecture CPUs, we focused on designing the system in a
way that virtually any platform is supported, e.g. GPUs running
OpenCL or Cuda and FPGAs which operate using logic gates in-
stead of a sequential stream of byte-code instructions. Our DSL
provides top-down high-level capabilities to describe algorithms
in a platform-independent manner using a very generic set of
operators. This DSL then allows workers to locally translate the
logic into platform-specific code and locally compile it for the
desired target architecture.

5.2. Preventing Malleability

A primary focus of the DSL is to ensure that all jobs terminate
gracefully in a timely manner and post no thread to the worker’s
platform whatsoever.

The DSL consists of a pre-processor that checks that any sub-
mitted job conforms to the standards of the proposed language,
as well as a runtime component to prevent crashes of the pro-
gram. Overflows, division by zero and other illegal statements
identified by the pre-processor will cause a job to be rejected
by the network. Also, because many of these illegal statements
won’t manifest themselves until the code is run, the DSL con-
tains a runtime component that continuous checks for illegal
conditions. If such a condition is encountered, the offending step
in the logic is bypassed rather than causing the job to crash.

To prevent jobs from running endlessly, traditional FOR,
WHILE, and DO loops as well as GOTO statements have been re-
moved from the language. Instead, we have provided a REPEAT

statement that requires scientist to provide an upper limit for
the number of iterations which allows the pre-processor to es-
timate the maximum computational effort it will take to execute
the loop. That allows for a precise WCET (worst-case execu-
tion time) estimation of the entire program logic which would
be not the case for deeply nested, highly-pipelined traditional
loops. Now, to ensure the logic runs in a timely manner, the
pre-processor estimates the amount of computation effort using
WCET analysis; only programs with a verification (and execu-
tion) WCET below a certain threshold are allowed to be sub-
mitted to the Blockchain in order to prevent clogging down the
entire network.

Additionally, the DSL does only allow to use an isolated, re-
stricted and highly limited memory space which prevents mali-
cious code to both eavesdrop on any other data and attack the
worker’s platform by allocating more resources on the target
platform than are available.

6. Summary

In this paper, we have described the general principles of public-
resource volunteer-computing paradigms and identified a few as-
pects that could be improved upon. Hence, we have proposed a
slightly adapted version of these traditional approaches, XEL,
that leverages Blockchain technology in order to allow scien-
tists to create an additional incentive for workers to share their
computational resources. These adaptations attract a number of
people to participate even if they have no further interest in the
scientific projects they are working on — a preliminary assump-
tion in traditional volunteer-computing. We have given a brief
overview of all important aspects of the end-to-end workflow,
beginning with the creation of new jobs all the way to the verifi-
cation of solutions that workers find. While very similar to tradi-
tional volunteer-computing, a number of crucial changes to the
way jobs and solutions are processed had to be made since the
monetary incentive is likely to attract all sorts of different attacks
on the system. The exact details of this approach are beyond the
scope of this high-level paper but will be covered in a follow-up
full paper version.

References

[1] David P Anderson. “Boinc: A system for public-resource
computing and storage”. In: proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing.
IEEE Computer Society. 2004, pp. 4-10.

[2] David P Anderson et al. “SETI@ home: an experiment
in public-resource computing”. In: Communications of the
ACM 45.11 (2002), pp. 56-61.

[3] Matt Cutts. “An introduction to the gimp”. In: Crossroads
3.4 (1997), pp. 28-30.

[4] Robert L Karg and Gerald L Thompson. “A heuristic ap-
proach to solving travelling salesman problems”. In: Man-
agement science 10.2 (1964), pp. 225-248.

[5] Wikipedia. Embarrassingly parallel — Wikipedia, The
Free Encyclopedia. http ://en.wikipedia.org/w/
index .php?title=Embarrassingly\%20parallel&
oldid = 830119483. [Online; accessed 17-May-2018].
2018.

[6] Wikipedia. Volunteer computing — Wikipedia, The Free
Encyclopedia. http://en.wikipedia.org/w/index.
php ? title = Volunteer \ %20computing & oldid =
840807707. [Online; accessed 17-May-2018]. 2018.

page 3 of 3

